Albahri, A., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., Homod, R. Z., Albahri, O., Alamoodi, A., & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers & Electrical Engineering, 118, 109409. https://doi.org/10.1016/j.compeleceng.2024.109409
Bang, H. N., Miles, L. S., & Gordon, R. D. (2019). Hurricane occurrence and seasonal activity: An analysis of the 2017 Atlantic Hurricane season. American Journal of Climate Change, 08(04), 454–481. https://doi.org/10.4236/ajcc.2019.84025
Barnes, C. F., Fritz, H., & Yoo, J. (2007). Hurricane disaster assessments with Image-Driven Data Mining in High-Resolution Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1631–1640. https://doi.org/10.1109/tgrs.2007.890808
Bauer, P. (2024). What if? Numerical weather prediction at the crossroads. Journal of the European Meteorological Society., 1, 100002. https://doi.org/10.1016/j.jemets.2024.100002
Bharosa, N., Lee, J., & Janssen, M. (2009). Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises. Information Systems Frontiers, 12(1), 49–65. https://doi.org/10.1007/s10796-009-9174-z
Bhowmik, S. R., Kotal, S. D., & Kalsi, S. R. (2005). An empirical model for predicting the decay of tropical cyclone wind speed after landfall over the Indian region. Journal of Applied Meteorology, 44(1), 179-185. https://journals.ametsoc.org/view/journals/apme/44/1/jam-2190.1.pdf
Bürgin, D., Anagnostopoulos, D., Anagnostopoulos, D., Doyle, M., Eliez, S., Fegert, J., Fuentes, J., Hebebrand, J., Hillegers, M., Karwautz, A., Kiss, E., Kotsis, K., Pejovic-Milovancevic, M., Christensen, A. M. R., Raynaud, J., Crommen, S., Çetin, F. Ç., Boricevic, V. M., Kehoe, L., . . . Fegert, J. M. (2022). Impact of war and forced displacement on children’s mental health—multilevel, needs-oriented, and trauma-informed approaches. European Child & Adolescent Psychiatry, 31(6), 845–853. https://doi.org/10.1007/s00787-022-01974-z
Byrraju, S. V., Rizos, D. C., & Qian, Y. (2020). Satellite radar imagery for detection and monitoring of geohazards. Transportation Research Record Journal of the Transportation Research Board, 2674(3), 283–292. https://doi.org/10.1177/0361198120910746
Cheng, C., Behzadan, A. H., & Noshadravan, A. (2021). Deep learning for post‐hurricane aerial damage assessment of buildings. Computer-Aided Civil and Infrastructure Engineering, 36(6), 695–710. https://doi.org/10.1111/mice.12658
Cook, A. D., Shrestha, M., & Htet, N. Z. B. (2018). An assessment of international emergency disaster response to the 2015 Nepal earthquakes. International Journal of Disaster Risk Reduction, 31, 535–547. https://doi.org/10.1016/j.ijdrr.2018.05.014
Drake, L. (2011). Scientific prerequisites to comprehension of the tropical cyclone forecast: intensity, track, and size. Weather and Forecasting, 27(2), 462–472. https://doi.org/10.1175/waf-d-11-00041.1
Fraser, R. S., Frazier, T., Manning, T., & Wood, E. (2022). Disaster recovery funding: Enhanced understanding for improved outcomes. Journal of Emergency Management, 20(8), 23–37. https://doi.org/10.5055/jem.0679
Gupta, T., & Roy, S. (2024). Applications of artificial intelligence in disaster management. ACL Digital Library, 126, 313–318. https://doi.org/10.1145/3669754.3669802
Hamilton, A. R. L., Södergård, B., & Liverani, M. (2021). The role of emergency medical teams in disaster response: a summary of the literature. Natural Hazards, 110(3), 1417–1426. https://doi.org/10.1007/s11069-021-05031-x
Harvey, N., Gross, A., Jose, F., Savarese, M., & Missimer, T. M. (2021). Geomorphological impact of Hurricane Irma on Marco Island, Southwest Florida. Natural Hazards, 106(1), 1–17. https://doi.org/10.1007/s11069-020-04445-3
Hudson, P., & Botzen, W. J. W. (2019). Cost–benefit analysis of flood‐zoning policies: A review of current practice. Wiley Interdisciplinary Reviews Water, 6(6). https://doi.org/10.1002/wat2.1387
Lamba-Nieves, D., & Santiago-Bartolomei, R. (2022). Who gets emergency housing relief? An analysis of FEMA individual assistance data after Hurricane María. Housing Policy Debate, 33(5), 1146–1166.https://doi.org/10.1080/10511482.2022.2055612
Lan, J., Liu, P., Hu, X., & Zhu, S. (2024). Harmful algal blooms in eutrophic marine environments: Causes, monitoring, and treatment. Water, 16(17), 2525.https://doi.org/10.3390/w16172525
Leroux, M., Meister, J., Mekies, D., Dorla, A., & Caroff, P. (2018). A Climatology of Southwest Indian Ocean Tropical systems: their number, tracks, impacts, sizes, empirical maximum potential intensity, and intensity changes. Journal of Applied Meteorology and Climatology, 57(4), 1021–1041. https://doi.org/10.1175/jamc-d-17-0094.1
López-Marrero, T., & Wisner, B. (2012). Not in the same boat: Disasters and differential vulnerability in the Insular Caribbean. Caribbean Studies, 40(2), 129–168. https://doi.org/10.1353/crb.2012.0034
Lu, Y., & Xu, J. (2014). The progress of emergency response and rescue in China: a comparative analysis of Wenchuan and Lushan earthquakes. Natural Hazards, 74(2), 421–444. https://doi.org/10.1007/s11069-014-1191-7
McCarthy, M. J., Jessen, B., Barry, M. J., Figueroa, M., McIntosh, J., Murray, T., Schmid, J., & Muller-Karger, F. E. (2020). Mapping hurricane damage: A comparative analysis of satellite monitoring methods. International Journal of Applied Earth Observation and Geoinformation, 91, 102134. https://doi.org/10.1016/j.jag.2020.102134
Mensah-Larkai, J. S., Sarker, T., Poleacovschi, C., Weems, C. F., Garcia, I., Nelson, T. N. T., & Rehmann, C. R. (2025). The Most Vulnerable to Housing Rebuilding after Hurricane Maria: Evaluating FEMA’s Individuals and Households Program in Puerto Rico. Natural Hazards Review, 26(2). https://doi.org/10.1061/nhrefo.nheng-1939
Mukhopadhyay, P., Prasad, V. S., Krishna, R. P. M., Deshpande, M., Ganai, M., Tirkey, S., Sarkar, S., Goswami, T., Johny, C. J., Roy, K., Mahakur, M., Durai, V. R., & Rajeevan, M. (2019). Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons. Journal of Earth System Science, 128(6). https://doi.org/10.1007/s12040-019-1186-6
Muroi, C. (2018). Brief history and recent activities of RSMC Tokyo - Typhoon Centre. DOAJ (DOAJ: Directory of Open Access Journals). https://doi.org/10.6057/2018tcrr01.09
Naeem, M., Ozuem, W., Howell, K., & Ranfagni, S. (2023). A Step-by-Step process of thematic analysis to develop a conceptual model in qualitative research. International Journal of Qualitative Methods, 22. https://doi.org/10.1177/16094069231205789
National Hurricane Center (NHC). (2021). The Saffir-Simpson Hurricane wind scale. In National Hurricane Center (NHC). https://www.nhc.noaa.gov/pdf/sshws.pdf
Onatayo, E. (2025). Integrating AI with Remote Sensing for Real-Time Disaster Monitoring and Rapid Response. International Journal of Research Publication and Reviews, 6(6), 4146–4164. https://doi.org/10.55248/gengpi.6.0125.0613
Paul, S., Ghebreyesus, D., & Sharif, H. O. (2019). Brief communication: Analysis of the fatalities and Socio-Economic impacts caused by Hurricane Florence. Geosciences, 9(2), 58. https://doi.org/10.3390/geosciences9020058
Pope, N. E. M., Brandão, N. C., Bower, N. K., & Verdugo-Castro, N. S. (2023). Qualitative research for interdisciplinary studies: Multiple methodologies for multiple disciplines. New Trends in Qualitative Research, 16, e825. https://doi.org/10.36367/ntqr.16.2023.e825
Price, J. F., Morzel, J., & Niiler, P. P. (2008). Warming of SST in the cool wake of a moving hurricane. Journal of Geophysical Research Atmospheres, 113(C7). https://doi.org/10.1029/2007jc004393
Ramsey, E., Rangoonwala, A., Middleton, B., & Lu, Z. (2009). Satellite optical and radar data used to track wetland forest impact and short-term recovery from Hurricane Katrina. Wetlands, 29(1), 66–79. https://doi.org/10.1672/08-103.1
Rohland, E. (2017). Adapting to hurricanes. A historical perspective on New Orleans from its foundation to Hurricane Katrina, 1718–2005. Wiley Interdisciplinary Reviews Climate Change, 9(1). https://doi.org/10.1002/wcc.488
Sanders, B. F., Schubert, J. E., Kahl, D. T., Mach, K. J., Brady, D., AghaKouchak, A., Forman, F., Matthew, R. A., Ulibarri, N., & Davis, S. J. (2022). Large and inequitable flood risks in Los Angeles, California. Nature Sustainability, 6(1), 47–57. https://doi.org/10.1038/s41893-022-00977-7
Şengöz, M. (2024). Utilization of artificial intelligence and big data in disaster management: Future risk reduction strategies. Haliç Üniversitesi Fen Bilimleri Dergisi. https://doi.org/10.46373/hafebid.1534925
Shafian, S. A., & Hu, D. (2024). Integrating Machine learning and Remote Sensing in Disaster Management: A Decadal Review of Post-Disaster Building Damage Assessment. Buildings, 14(8), 2344. https://doi.org/10.3390/buildings14082344
Smith, R. K. (2000). The role of cumulus convection in hurricanes and its representation in hurricane models. Reviews of Geophysics, 38(4), 465–489. https://doi.org/10.1029/1999rg000080
Son, B., Roscoe, S., & Sodhi, M. S. (2024). Dynamic capabilities of global and local humanitarian organizations with emergency response and long-term development missions. International Journal of Operations & Production Management. https://doi.org/10.1108/ijopm-12-2022-0778
Stuivenvolt-Allen, J., & Wang, S. S. (2022). North American fire weather catalyzed by the extratropical transition of tropical cyclones. Climate Dynamics, 61(1–2), 65–78. https://doi.org/10.1007/s00382-022-06561-1
Taylor, H. T., Ward, B., Willis, M., & Zaleski, W. (2010). The saffir-simpson hurricane wind scale. Atmospheric Administration: Washington, DC, USA. https://mail.hwn.org/media/pdf/sshws.pdf
Valcik, N. A., & Tracy, P. E. (2017). Case studies in disaster response and emergency management. In Routledge eBooks. https://doi.org/10.4324/9781315459370
Vandrevala, T., Morrow, E., Coates, T., Boulton, R., Crawshaw, A. F., O’Dwyer, E., & Heitmeyer, C. (2024). Strengthening the relationship between community resilience and health emergency communication: a systematic review. BMC Global and Public Health, 2(1). https://doi.org/10.1186/s44263-024-00112-y
Vigh, J. L., Knaff, J. A., & Schubert, W. H. (2012). A climatology of hurricane eye formation. Monthly Weather Review, 140(5), 1405–1426. https://doi.org/10.1175/mwr-d-11-00108.1
Waddell, S. L., Jayaweera, D. T., Mirsaeidi, M., Beier, J. C., & Kumar, N. (2021). Perspectives on the Health Effects of Hurricanes: A review and challenges. International Journal of Environmental Research and Public Health, 18(5), 2756. https://doi.org/10.3390/ijerph18052756
Wahiduzzaman, M., & Yeasmin, A. (2024). An assessment of tropical cyclone frequency in the Bay of Bengal and its impact on coastal Bangladesh. Coasts, 4(3), 594–608. https://doi.org/10.3390/coasts4030030
Wang, J., Chang, Y., & Tse, K. T. (2024). Synthesis of Tropical Cyclones: Understanding, modeling, and adapting to climate change impacts. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.114390
Wehner, M. F., & Kossin, J. P. (2024). The growing inadequacy of an open-ended Saffir–Simpson hurricane wind scale in a warming world. Proceedings of the National Academy of Sciences, 121(7). https://doi.org/10.1073/pnas.2308901121
Xu, Z., Lachlan, K., Ellis, L., & Rainear, A. M. (2019). Understanding public opinion in different disaster stages: a case study of Hurricane Irma. Internet Research, 30(2), 695–709. https://doi.org/10.1108/intr-12-2018-0517
Yablonsky, R. M., Ginis, I., Thomas, B., Tallapragada, V., Sheinin, D., & Bernardet, L. (2014). Description and analysis of the ocean component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF). Journal of Atmospheric and Oceanic Technology, 32(1), 144–163. https://doi.org/10.1175/jtech-d-14-00063.1
Yang, D., Wang, W., & Hong, T. (2022). A historical weather forecast dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) for energy forecasting. Solar Energy, 232, 263–274. https://doi.org/10.1016/j.solener.2021.12.011
Zhong, N. C. (2018). Formation and prevention of hurricanes, typhoons and cyclones. Journal of Environmental Science and Engineering B, 7(8). https://doi.org/10.17265/2162-5263/2018.08.002